|
|
||
|
第7章 电子的动量
7.5 质速关系
从电子动量的洛仑兹变换推导出质速公式,整个过程没有什么不符合逻辑的地方。这样,证明了这个理论与实验是一至的。
1. 微观粒子的质速关系
中性粒子和带电粒子统称为微观粒子,简称为粒子。 从微观粒子的引力物质的动量遵从洛仑兹变换的假定,得出中性粒子遵从洛仑兹变换,中子的总质量或惯性质量遵从质速公式。 从电子导出的质速关系是公式(62),即
也适合中子。中子的静质量是m0,惯性质量是m,也是粒子的总质量。不必追问惯性质量m是如何获得的,m只是动量的参数。 这个质速关系是相对于观测者而言的。在某种意义上,观测者相当于绝对静止的背景空间,或是质心。
2. 质量的本征值
这里所说的质量本征值是对一切微观粒子而言的。前面说过,电子质量的的本征值是m0,它在任何惯性系中都有相同的值。同理,中子质量的本征值也是m0。所以说微观粒子的质量本征值是m0。 当电子与观测者相对静止,并且同处于失重状态下,这时引力质量m0等于0。这种情况下,测定电子的惯性质量,其数值仍然是引力质量m0。这表明,失重状态下,引力质量并不为0,它仍然以惯性质量数值存在着。可见,质量的本征值是m0。 结论是: 一切微观粒子,质量的本征值都是引力质量m0。因为我们生存在引力世界这个层面中。
3. 质速关系的本质
(1)电子被电磁场加速,实质上是电荷被加速。与电荷对应的电磁惯性质量不遵从牛顿第二定律:
而是遵循
显然,电磁惯性质量与引力惯性质量的惯性性质是不同的,这是可以理解的。因为引力物质与电磁物质毕竟是两种不同属性的物质。 (2)前面,我们不仅接受了 引力质量 = 引力惯性质量 的结论,并认定引力质量m0是本征值,又特别强调了电子的引力性质在任何相互作用中不变,即引力质量不变。 如果不是这样,将会产生无法克服的矛盾。例如,电子的速度接近光速时,它的引力质量将变为无限大。于是,与电子相对运动的物质和观测者将被电子吸引到自已的周围,事实上这种事情从未发生过。 (3)从质谱仪测出的电子质量是惯性质量,不是引力质量。所以,没有任何理由和证据表明电子的引力质量和引力惯性质量是可变的。 (4)质速关系的本质提示我们,电荷的惯性性质不同于宏观物体的惯性性质。 经典惯性性质是,力与加速度成正比,且永远成正比。与相对运动速度无关。 电磁惯性性质是,惯性大小与相对运动速度相关。 (5)本书没有苛意使用电磁惯性质量一词,而是使用惯性质量,或总质量。这样作的目的之一是便于把质速关系推广到中性粒子。此外,我们对电磁质量的了解不十分清楚,同时它也没有得到物理学的公认。 实质上,电磁相对论恰好是微观粒子的论理,这是始料未及的。
(以上是书上的原文,第7章至到结束)
这一节的重点,是强调 物质 的
惯性性质
宏观物体的惯性性质为
牛顿力学
相对论力学
即非线性关系。
什么 高速向低速过渡, 向小姨子过渡
只有电子的高速向电子的低速过渡, 不能从电子向宏观物体过渡。 没有道理嘛。
两个不同性质的东西,怎么过,
过了, 就是 不正当关系。
同时 我们看出 用 电磁动量 的 洛仑兹变换 求出 质速关系 是
建立相对论力学的正确方法而且 恰好 冯天岳 一贯喜欢 投机取巧 这次又让他瞎猫碰上死耗子
现在,回过头来看 托尔曼 假想碰撞实验 不成体统 闹剧
是不是 相对论很简单,一致性很好。
统观全局 很
优美
|
||
|
|